
 Pearson

Mark Scheme (Results)

October 2020

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WST02_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
2(a)	$\mathrm{f}(w)=\left\{\begin{array}{cc} \frac{1}{8} & -1.4<w<6.6 \\ 0 & \text { otherwise } \end{array}\right.$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
			(2)
(b)	$\mathrm{E}(W)=2.6$ oe		B1
			(1)
(c)	$(1.6-\alpha) \times " \frac{1}{8} "=0.35$		M1
	$\alpha=-1.2$ oe		A1cso
			(2)
(d)	$\mathrm{P}(1.2<W<2.4)=(2.4-1.2) \times " \frac{1}{8} "$		M1
	$=\frac{3}{20} \text { or } 0.15 \mathrm{oe}$		A1ft
			(2)
(e)	$\mathrm{P}(W)$	$1.2<W<2.4)=\frac{0.4 \times 1 / 8 "}{" 0.15 "}$	M1
		$=\frac{1}{3}$	A1
			(2)
(f)	The random variable Y is the number of days the train is between 1.2 minutes and 2.4 minutes late $Y \sim \mathrm{~B}(40, " 0.15$ ")		M1
	$\mathrm{P}(Y \geq 10)=1-\mathrm{P}(Y \leq 9)$ or $1-0.9328$		M1
		$=0.0672$	A1 (3)
2(a)	Notes \quad where p is a probability		Total 12
	M1	pdf of the form $[\mathrm{f}(w)=]\left\{\begin{array}{ccl}p & -1.4<w<6.6 & \begin{array}{l}\text { where } p \text { is a probability allow use of } \\ \text { of one/both }<\text { signs. Allow equivale } \\ 0\end{array} \\ \text { otherwise } & \text { otherwise. Allow any letter/mix of }\end{array}\right.$	\leq instead nt for the 0 etters
	A1	Fully correct allow use of \leq instead of one/both < signs. Allow any letter but must be consistent.	
(b)	B1	2.6 oe	
(c)	M1	setting up equation $(1.6-\alpha) \times$ "their $p^{\prime \prime}=0.35$ with $0<p<1$ or $\frac{7}{20}=\frac{2.8}{8}$ and $\alpha=1.6-" 2.8$ " or $\mathrm{F}(1.6)-\mathrm{F}(\alpha)=0.35$ using their $\mathrm{F}(w)$ in the form $b w+c$ where $0<b<1$ Allow for $\int_{\alpha}^{1.6}$ "their $\mathrm{f}(w)$ " $\mathrm{d} w=0.35$ oe with an attempt to integrate (at least one term correct)	
(d)	A1 cso	If using $\mathrm{F}(1.6)-\mathrm{F}(\alpha)=0.35$ then $\mathrm{F}(w)$ must be correct. Allow different letters	
	M1	$(2.4-1.2) \times$ "their p " where "their $\frac{1}{8}$ "is a probability or $\mathrm{F}(2.4)-\mathrm{F}(1.2)$ using their $\mathrm{F}(w)$ in the form $b w+c$ where $0<b<1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ their $\mathrm{f}(w)$ " $\mathrm{d} w$ with an attempt to integrate (at least one term correct).	
	A1ft	Ft their p as long as the answer is a probability	
(e)	M1	$\frac{0.4 \times \text { "their } 1 / 8 "}{" t h e i r ~(d) "}$ or $\frac{0.4}{" 1.2^{" \prime}}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their $\mathrm{f}(w)$ " $\mathrm{d} w$ with an attempt to integrate (at least one term correct) for numerator	
	A1	Allow $0 . \dot{3}$ or $0.3 \dot{3}$	
(f)	M1	Writing or using B(40, " their 0.15 ") Implied by mean of $40 \times$ "their (d)"	
	M1	Writing or using $1-\mathrm{P}(Y \leq 9)$ Allow for $1-\mathrm{P}\left(z \leqslant \frac{9.5 \text { or } 9-\text { "their mean" }}{\text { "their sd" }}\right)$	
	A1	awrt 0.0672	

Question Number	Scheme			Marks
3(a)(i)	$X \sim \mathrm{~B}(10,0.45)$			M1
	$\mathrm{P}(X \leq 1)=0.0233$		awrt 0.0233	A1
(ii)	$\mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)$ or $1-0.7384$			M1
	$=0.2616 \ldots$		awrt 0.262	A1
				(4)
(b)	$F \sim \mathrm{~N}(54,29.7)$			M1A1
	$\frac{c+0.5-54}{\sqrt{29.7}} \leq-1.6449 \quad \text { or } \quad \frac{d-0.5-54}{\sqrt{29.7}} \geq 1.6449$			$\begin{aligned} & \text { M1M1B1 } \\ & \text { A1 } \end{aligned}$
	$c=44$ and $d=64$			A1cso
				(7)
(c)	$\mathrm{H}_{0}: p=0.45 \quad \mathrm{H}_{1}: p<0.45$			B1
	$Y \sim \mathrm{~B}(30,0.45)$ therefore $\mathrm{P}(Y \leq 8)=0.03 \ldots$ or $\mathrm{CR} Y \leq 8$			B1
	8 is in the critical region or Reject H_{0} oe or significant			dM1
	therefore the data collected supports the manufacturer's claim.			A1
				(4)
	Notes			Total 15
(a)(i)	M1 Writing or using $\mathrm{B}(10,0.45)$ in (i) or (ii) implied by a correct answer to (i) or (ii) $_{\text {(}}$			
	A1	awrt 0.0233		
(ii)	M1 For writing or using 1-P $(X \leq 5)$ oe			
	A1	awrt 0.262		
(b)	M1	For writing or using $\mathrm{N}(54, \ldots)$		
	A1	For writing or using $\mathrm{N}(54,29.7)$		
	M1	For standardising (allow \pm) using their " 54 " and "29.7" and putting $=$ to z value where $1<\|z\|<2$ Condone missing ± 0.5		
	M1	M1 for using a continuity correction ± 0.5 in standardisation. No need to put $=$ to z value		
	B1	For using 1.6449 or better (calc gives) $1.64485 \ldots$. Allow if written then gone on to use 1.65 or 1.64 or better in equation		
	A1	One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or better		
	A1cso	All previous marks awarded. Both c and d correct integers		
		NB: c and d correct with no working can be awarded full marks		
(c)	B1	Both hypotheses correct in terms of p or π Must be attached to H_{0} and H_{1}		
	B1	0.03 or better $(0.03120 \ldots)$ or CR stated as $Y \leq 8$ oe do not accept $\mathrm{P}(Y \leq 8)=\ldots$ for CR Condone 0.97 or better ($0.96879 \ldots$)		
	dM1	Dep on $2^{\text {nd }} \mathrm{B} 1$ A correct statement - need not be contextual but do not allow contradicting non contextual comments. Allow opposite conclusion if 2-tail hypotheses given.		
	A1	Correct conclusion for their H_{1}. If H_{1} is 2- tail the opposite conclusion must be given. No hypotheses or $\mathrm{H}_{1} p>0.45$ is A0. Allow belief instead of claim. Allow the data collected supports that the proportion/percentage/probability/number/amount oe of flawed plates has decreased/reduced/is not $0.45 /$ has changed oe		

Question Number	Scheme		Marks
5(a)	$\mathrm{E}\left(T^{2}\right)=\int_{0}^{3} \frac{1}{50}\left(18 t^{2}-2 t^{3}\right) \mathrm{d} t+\int_{3}^{5} \frac{1}{20} t^{2} \mathrm{~d} t$		M1
	$=\left[\frac{1}{50}\left(6 t^{3}-\frac{t^{4}}{2}\right)\right]_{0}^{3}+\left[\frac{t^{3}}{60}\right]_{3}^{5}$ or $\quad=\left[\frac{3}{25} t^{3}-\frac{t^{4}}{100}\right]_{0}^{3}+\left[\frac{t^{3}}{60}\right]_{3}^{5} \mathrm{oe}$		A1
	$=\frac{1}{50}\left(6 \times 3^{3}-\frac{3^{4}}{2}\right)+\left(\frac{125}{60}-\frac{27}{60}\right)$ or $\quad=\frac{1}{50}\left(162-\frac{81}{2}\right)+\left(\frac{25}{12}-\frac{9}{20}\right)$ oe		M1d
	$=\frac{1219}{300}=4.063 \ldots$		
	$\operatorname{Var}(T)=$ "4.063 ..." - 1.66$)^{2}$		M1
	$=1.3077 \ldots$ awrt 1.31		A1
			(5)
(b)	$\int_{3}^{t} \frac{1}{20} \mathrm{~d} x+C$ where $C=0.9$ or $\int_{0}^{3} \frac{1}{50}(18-2 t) \mathrm{d} t \quad$ or using $\mathrm{F}(5)=1$ to find C		M1
		$\int 0 \quad t<0$	B1
		[F(t)] $\frac{1}{50}\left(18 t-t^{2}\right)$ or $1.62-\frac{(18-2 t)^{2}}{200} \quad 0 \leq t \leq 3$	A1
		[F(t)] $\frac{1}{20} t+0.75 \quad 3<t \leq 5$	A1
		1 1 $t>5$	(4)
(c)	$\mathrm{P}(T>2)=1-" \frac{1}{50}\left(18 \times 2-2^{2}\right)$ " or $1-\int_{0}^{2} \frac{1}{50}(18-2 t) \mathrm{d} t$		M1
	$=\frac{9}{25}$ or 0.36		A1
			(2)
(d)	$\mathrm{P}(0<T<3.66)=\mathrm{F}(3.66)$		M1
	$=0.933$		A1
			(2)
	Notes		Total 13
(a)	M1	Intention to find $\mathrm{E}\left(T^{2}\right)$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $\left.x^{n} \rightarrow x^{n+1}\right)$. Algebraic integration must be seen. Ignore limits. Allow as part of $\operatorname{Var}(T)$ condone " $-(1.66)^{2 "}$ occurring twice. If no algebraic integration shown it is M0	
	A1	Correct integration	
	M1d	dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or $243 / 100$ or $49 \backslash 30$ oe	
	M1	For their $\mathrm{E}\left(T^{2}\right)-1.66^{2}$	
	A1	awrt 1.31 Allow 2452/1875 oe	
(b)	M1	For a correct method to find the $3^{\text {rd }}$ line including limits unless using $\mathrm{F}(5)=1$ method.	
	B1	$2^{\text {nd }}$ line correct - any letter. Ignore missing inequality	
	A1	$3^{\text {rd }}$ line correct- any letter. Ignore missing inequality	
	A1	Fully correct CDF All in terms of the same letter (Ignore LHS). Allow $<$ instead of \leq and vice versa. Allow "otherwise" for the range on the $1^{\text {st }}$ or last line but not both.	
(c)	M1	For finding $1-\mathrm{F}(2)$ using their second line or starting again. Must subst in 2	
	A1	cao	
(d)	M1	For realising they need $\mathrm{F}(3.66)$ Allow $\mathrm{F}(3.66)[-\mathrm{F}(0)]$ allow $\mathrm{F}($ "their mean +2 ") $[-\mathrm{F}(0)]$	
	A1	Cao allow answer as a fraction	

Question Number	Scheme					Marks
6(a)	A sampling distribution is all the values of a statistic and the associated probabilities or the probability distribution of the statistic.					B1
						(1)
(b)	$\mathrm{P}(\operatorname{small}(40))=0.5, \mathrm{P}($ medium $(80))=0.3, \mathrm{P}(\operatorname{large}(150))=0.2$					B1
	Range (R) 0, 40, 70, 110					B1
	$[\mathrm{P}(R=0)=] " 0.5^{\prime 3}+" 0.3 "^{3}+" 0.2^{\prime 3}=0.16$					M1
	$\begin{aligned} & (40,40,80)(40,80,80) \\ & (80,80,150)(80,150,150) \\ & (40,40,150)(40,80,150)(40,150,150) \end{aligned}$					B1
	$[\mathrm{P}(R=40)=] 3 \times(" 0.5 " \times 10.3$ "2 $)+3 \times\left(" 0.5{ }^{\prime 2} \times\right.$ " $\left.0.3 "\right)$					$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	$[\mathrm{P}(R=70)=] 3 \times\left(" 0.3{ }^{2} \times 40.2 "\right)+3 \times($ "0.3"×"0.2"2 $)=0.09$					
	R	0	40	70	110	A1cao
	r	0.16	0.36	0.09	0.39	
						(7)
(c)	$(1-" 0.09 \text { ") })^{n}<0.2$ or $(" 0.91 ")^{n}<0.2$					M1
	[$n>$]17.065 ...					M1
	$n=18$					A1
						(3)
	Notes					Total 11
6(a)	B1	A correct explanation with the words in bold. Allow equivalent words eg outcomes for values				
(b)	B1	Correct probabilities - may be seen in an equation or implied by a correct probability for $R=0$ or for 2 correct probabilities from those for $R=40, R=70, R=110$				
	B1	All four ranges correct with no extra.				
	M1	Correct method for finding $\mathrm{P}(R=0)$				
	B1	All the correct combinations for $R=40,70$ and 110. $R=0$ combinations are not required but no incorrect combinations must be seen (may use bag size rather than numbers in bag) May be implied by a correct probability for $\mathrm{P}(R=40), \mathrm{P}(R=70)$ and $\mathrm{P}(R=110)$ or by correct working seen for each of the 7 combinations (no need for the number of ways of arranging ie $3 \times$ or $6 \times)$ eg $(40,40,80)=0.5^{2} \times 0.3$				
	M1	Correct method for one of the probabilities for $\mathrm{P}(R=40), \mathrm{P}(R=70), \mathrm{P}(R=110)$				
	M1	Correct method for a second probability for $\mathrm{P}(R=40), \mathrm{P}(R=70), \mathrm{P}(R=110)$ or the 4 probabilities add up to 1 .				
	A1	Correct answer only. Allow answers as a fraction. Need not be in a table but probabilities must be attached to the correct range				
(c)	M1	Setting up a correct inequality using their 0.09 Allow written as an equation.				
	M1	For 17.1 or better allow $\frac{\log 0.2}{\log 0.91 "}$ or $\log ^{n} 0.91^{\prime \prime} 0.2$ oe If inequality/equation is incorrect but of the form $(p)^{n}<0.2(p)^{n}=0.2$ where $0<p<1$ this mark can be awarded if working is shown				
	A1	18 do not accept $n>18$ or $n<18$ if final answer				

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

